3.432 \(\int \frac{\cos ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=127 \[ \frac{2 \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}-\frac{a x \left (2 a^2-3 b^2\right )}{2 b^4}+\frac{\cos ^3(c+d x)}{3 b d} \]

[Out]

-(a*(2*a^2 - 3*b^2)*x)/(2*b^4) + (2*(a^2 - b^2)^(3/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*d
) + Cos[c + d*x]^3/(3*b*d) - (Cos[c + d*x]*(2*(a^2 - b^2) - a*b*Sin[c + d*x]))/(2*b^3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.252221, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2695, 2865, 2735, 2660, 618, 204} \[ \frac{2 \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}-\frac{a x \left (2 a^2-3 b^2\right )}{2 b^4}+\frac{\cos ^3(c+d x)}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

-(a*(2*a^2 - 3*b^2)*x)/(2*b^4) + (2*(a^2 - b^2)^(3/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*d
) + Cos[c + d*x]^3/(3*b*d) - (Cos[c + d*x]*(2*(a^2 - b^2) - a*b*Sin[c + d*x]))/(2*b^3*d)

Rule 2695

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(b*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x)}{a+b \sin (c+d x)} \, dx &=\frac{\cos ^3(c+d x)}{3 b d}+\frac{\int \frac{\cos ^2(c+d x) (b+a \sin (c+d x))}{a+b \sin (c+d x)} \, dx}{b}\\ &=\frac{\cos ^3(c+d x)}{3 b d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}+\frac{\int \frac{-b \left (a^2-2 b^2\right )-a \left (2 a^2-3 b^2\right ) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{2 b^3}\\ &=-\frac{a \left (2 a^2-3 b^2\right ) x}{2 b^4}+\frac{\cos ^3(c+d x)}{3 b d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}+\frac{\left (a^2-b^2\right )^2 \int \frac{1}{a+b \sin (c+d x)} \, dx}{b^4}\\ &=-\frac{a \left (2 a^2-3 b^2\right ) x}{2 b^4}+\frac{\cos ^3(c+d x)}{3 b d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}+\frac{\left (2 \left (a^2-b^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=-\frac{a \left (2 a^2-3 b^2\right ) x}{2 b^4}+\frac{\cos ^3(c+d x)}{3 b d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}-\frac{\left (4 \left (a^2-b^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=-\frac{a \left (2 a^2-3 b^2\right ) x}{2 b^4}+\frac{2 \left (a^2-b^2\right )^{3/2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{b^4 d}+\frac{\cos ^3(c+d x)}{3 b d}-\frac{\cos (c+d x) \left (2 \left (a^2-b^2\right )-a b \sin (c+d x)\right )}{2 b^3 d}\\ \end{align*}

Mathematica [B]  time = 6.13175, size = 1685, normalized size = 13.27 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

(Cos[c + d*x]^3*((4*Sqrt[2]*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(3/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/
(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3/(4*(1 + ((a - b)*(-(b/(a -
b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(
-1))/2 + (3*b^2*(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a
- b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a
 - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(8*(a - b)^2*(-(b/(a -
 b)) - (b*Sin[c + d*x])/(a - b))^2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2)))/(3*(a
+ b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*(-(((-((a*b
)/(a - b)) + b^2/(a - b))*(-(((-((a*b)/(a + b)) - b^2/(a + b))*((-2*(-((a*b)/(a + b)) - b^2/(a + b))*ArcTan[(S
qrt[(a*b)/(a + b) + b^2/(a + b)]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[-((a*b)/(a - b)) + b^2/(
a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[-((a*b)/(a - b)) + b^2/(a - b)]*Sqrt[(a*b)/(a +
b) + b^2/(a + b)]) + (2*Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[
a + b]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[a + b])))/b) + (2*Sqrt[2]*(a - b)*Sqrt[-(b/(a - b
)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin
[c + d*x])/(a - b)))/(2*b))^(3/2)*((Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]
)/(Sqrt[2]*Sqrt[b])])/(Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a
 - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)) + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b
)))/(2*b)))))/(b*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b) + (4*Sqrt[2]*Sqrt[-(b/
(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) -
(b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3*Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/
(a - b)])/(Sqrt[2]*Sqrt[b])])/(4*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a -
b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)) + (3/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d
*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/4))/((a + b)*
Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b))/(d*(1 - (a + b*Sin[c + d*x])/(a - b))^(3/2)*(1
 - (a + b*Sin[c + d*x])/(a + b))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.045, size = 450, normalized size = 3.5 \begin{align*} -{\frac{a}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-3}}-2\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}{a}^{2}}{d{b}^{3} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{3}}}+4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}}{bd \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{3}}}-4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}{a}^{2}}{d{b}^{3} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{3}}}+4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{bd \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{3}}}+{\frac{a}{d{b}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-3}}-2\,{\frac{{a}^{2}}{d{b}^{3} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{3}}}+{\frac{8}{3\,bd} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-3}}-2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ){a}^{3}}{d{b}^{4}}}+3\,{\frac{a\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{b}^{2}}}+2\,{\frac{{a}^{4}}{d{b}^{4}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-4\,{\frac{{a}^{2}}{d{b}^{2}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }+2\,{\frac{1}{d\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+b*sin(d*x+c)),x)

[Out]

-1/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^3*a*tan(1/2*d*x+1/2*c)^5-2/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*
c)^4*a^2+4/d/b/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)^4-4/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+
1/2*c)^2*a^2+4/d/b/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)^2+1/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^3*a*tan(1/
2*d*x+1/2*c)-2/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3*a^2+8/3/d/b/(1+tan(1/2*d*x+1/2*c)^2)^3-2/d/b^4*arctan(tan(1/2*
d*x+1/2*c))*a^3+3/d/b^2*a*arctan(tan(1/2*d*x+1/2*c))+2/d/b^4/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c
)+2*b)/(a^2-b^2)^(1/2))*a^4-4/d/b^2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))*a
^2+2/d/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.72894, size = 768, normalized size = 6.05 \begin{align*} \left [\frac{2 \, b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \,{\left (2 \, a^{3} - 3 \, a b^{2}\right )} d x - 3 \,{\left (a^{2} - b^{2}\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 6 \,{\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )}{6 \, b^{4} d}, \frac{2 \, b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \,{\left (2 \, a^{3} - 3 \, a b^{2}\right )} d x - 6 \,{\left (a^{2} - b^{2}\right )}^{\frac{3}{2}} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - 6 \,{\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )}{6 \, b^{4} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[1/6*(2*b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)*sin(d*x + c) - 3*(2*a^3 - 3*a*b^2)*d*x - 3*(a^2 - b^2)*sqrt(
-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c
) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 6*(a^2*b - b^3)
*cos(d*x + c))/(b^4*d), 1/6*(2*b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)*sin(d*x + c) - 3*(2*a^3 - 3*a*b^2)*d*
x - 6*(a^2 - b^2)^(3/2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - 6*(a^2*b - b^3)*cos(d*x
 + c))/(b^4*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.11415, size = 305, normalized size = 2.4 \begin{align*} -\frac{\frac{3 \,{\left (2 \, a^{3} - 3 \, a b^{2}\right )}{\left (d x + c\right )}}{b^{4}} - \frac{12 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} b^{4}} + \frac{2 \,{\left (3 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, a^{2} - 8 \, b^{2}\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{3} b^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(3*(2*a^3 - 3*a*b^2)*(d*x + c)/b^4 - 12*(a^4 - 2*a^2*b^2 + b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a)
+ arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^4) + 2*(3*a*b*tan(1/2*d*x + 1/2*c)^
5 + 6*a^2*tan(1/2*d*x + 1/2*c)^4 - 12*b^2*tan(1/2*d*x + 1/2*c)^4 + 12*a^2*tan(1/2*d*x + 1/2*c)^2 - 12*b^2*tan(
1/2*d*x + 1/2*c)^2 - 3*a*b*tan(1/2*d*x + 1/2*c) + 6*a^2 - 8*b^2)/((tan(1/2*d*x + 1/2*c)^2 + 1)^3*b^3))/d